Thursday, July 30, 2009

4/v = (v - 6) / (v - 4), standard form?

How do I get it in standard form, ax+bx+c = 0, so I can do the quadratic formula?

4/v = (v - 6) / (v - 4), standard form?
Just cross multiply here.





4*(v-4) = (v-6)*v


4v - 16 = v² - 6v


0 = v² - 10v + 16 ---%26gt;"standard form"





Factor way to solve:


0 = v² - 10v + 16


0 = (v - 2)(v - 8)


0 = v-2, and 0 = v-8


v = 2, and v = 8





Or use quadratic formula:


v = [-b ± √(b² - 4ac)] / 2a


v = [10 ± √(10² - 4(1)(16))] / 2(1)


v = [10 ± √(100 - 64)] / 2


v = [10 ± √(36)] / 2


v = [10 ± 6] / 2


So, 2 answers:


v = (10+6)/2, and v = (10-6)/2


v = 16/2, and v = 4/2


v = 8, and v = 2
Reply:Simplifyin it......





4v - 16 = v^2 -6v





v^2 -10v + 16 =0





v=8 or v=2.





sol set { 8 or 2}
Reply:4/v = (v - 6)/(v - 4)


4(v - 4) = v(v - 6)


4v - 16 = v^2 - 6v


v^2 - 10v + 16 = 0





The equation is now in the form ax^2 + bx + c, you can either use fatorisation, completing the square or quadratic formula. However, factorisation is more preferred in solving this equation.





(v - 2)(v - 8) = 0


v = 2 or v = 8
Reply:4/v = (v-6) / (v-4)


4 = (v-6) / (v-4) * v


4 = (v2 -6v -4v + 24) * v


4 = v3 - 10v2 + 24v


0 = v3 - 10v2 + 24v - 4
Reply:v^2-10v+16=0

verbena

No comments:

Post a Comment